Nonnegative mean squared prediction error estimation in small area estimation
نویسندگان
چکیده
Small area estimation has received enormous attention in recent years due to its wide range of application, particularly in policy making decisions. The variance based on direct sample size of small area estimator is unduly large and there is a need of constructing model based estimator with low mean squared prediction error (MSPE). Estimation of MSPE and in particular the bias correction of MSPE plays the central piece of small area estimation research. In this article, a new technique of bias correction for the estimated MSPE is proposed. It is shown that that the new MSPE estimator attains the same level of bias correction as the existing estimators based on straight Taylor expansion and jackknife methods. However, unlike the existing methods, the proposed estimate of MSPE is always nonnegative. Furthermore, the proposed method can be used for general two-level small area models where the variables at each level can be discrete or continuous and, in particular, be nonnormal.
منابع مشابه
Resampling Based Empirical Prediction: An Application to Small Area Estimation
Best linear unbiased prediction is well known for its wide range of applications including small area estimation. While the theory is well established for mixed linear models and under normality of the error and mixing distributions, the literature is sparse for nonlinear mixed models under nonnormality of the error or of the mixing distributions. This article develops a resampling based unifie...
متن کاملSmall area prediction based on unit level models when the covariate mean is measured with error
Agencies and policy makers are interested in constructing reliable estimates for areas with small sample sizes, where areas often refer to geographic areas and demographic groups. The estimation for such areas is known as small area estimation. Procedures based on models have been used to construct estimates for the small area means, by exploiting auxiliary information. Mixed models are suitabl...
متن کاملBayes, E-Bayes and Robust Bayes Premium Estimation and Prediction under the Squared Log Error Loss Function
In risk analysis based on Bayesian framework, premium calculation requires specification of a prior distribution for the risk parameter in the heterogeneous portfolio. When the prior knowledge is vague, the E-Bayesian and robust Bayesian analysis can be used to handle the uncertainty in specifying the prior distribution by considering a class of priors instead of a single prior. In th...
متن کاملComparison of Small Area Estimation Methods for Estimating Unemployment Rate
Extended Abstract. In recent years, needs for small area estimations have been greatly increased for large surveys particularly household surveys in Sta­ tistical Centre of Iran (SCI), because of the costs and respondent burden. The lack of suitable auxiliary variables between two decennial housing and popula­ tion census is a challenge for SCI in using these methods. In general, the...
متن کاملPrediction Error of Small Area Predictors Shrinking Both Means and Variances
The article considers a new approach for small area estimation based on a joint modelling of mean and variances. Model parameters are estimated via expectation–maximization algorithm. The conditional mean squared error is used to evaluate the prediction error. Analytical expressions are obtained for the conditional mean squared error and its estimator. Our approximations are second-order correc...
متن کامل